he C# and VB.NET languages and development environ-

ments are practically identical today. However, I believe

this is temporary. In the long run, they will evolve to bet-
ter serve different markets and needs. Let me explain.

Developing an application as rapidly as possible to be the first
to market often comes at the expense of long-term maintenance.
These goals conflict, because each requires different sets of skills,
quality control, and management mentality.

Traditionally, Visual Basic 6 and its predecessors ruled the
Rapid Application Development (RAD) market. Relatively un-
skilled developers could produce applications quickly and effec-
tively. VBG6 did a great job of encapsulating the underlying Win-
dows programming model and interaction with COM. But VB6
had a problem: It would hit the wall at a certain functional point
of the application. There were things you simply could not do in
VB6 without resorting to tools outside the environment or having
extraordinary knowledge of VBG's internal workings (see Figure 1).

On the other hand, languages such as C++ and technologies
such as MFC and COM provided limitless capabilities. You
could incorporate everything from multithreading to object-
oriented modeling to Windows message hooking. Moreover,
you could gain such new functionality at an incremental cost in
developer skill most of the time. But even the most trivial MFC
application required a considerable skill level, and more complex
applications were often beyond the reach of most developers.

NET offers a clean slate. It lowers the entry barrier for devel-
oper skills substantially—at least compared to C++. Yet VS.NET
doesn’t impose the tool limitations VB6 did. .NET’s advantages
and programming models are analogous to those of C++, COM,
and MFC. Proficient VBG6 developers appreciate .NET because
they can acquire new skills and add advanced functionality incre-
mentally. NET doesn’t require a disproportionate increase in
skill level and effort.

At the same time, developers experienced with C++, MFC,
and COM love .NET because suddenly everything becomes so
much easier. The question is, what happens with relatively un-
skilled developers whose applications were already easy to build
and adequate with VB6? Unfortunately, most VB6 developers
fall into that category, and .NET has little to offer them. For

C++, MFC, ATL, com

skill

Application functionality

Figure 1 Different Developers Need Different Tools. Unskilled VB6
developers can do a lot with VBB, but find .NET to be too difficult.
C++ developers and advanced VB6 developers appreciate the el-
egance and productivity of .NET, and are not deterred by the higher
entrance barrier.

80 VISUAL STUDIO MAGAZINE *

RAD purposes, they are better off
with VB6.

.NET today lacks a tool or
language that encapsulates inter-
actions with the .NET class li-
braries and runtime. Such a tool
would provide task-oriented de-
velopment (Microsoftese for
RAD) comparable to what VB6
provided with Windows pro-
gramming. Microsoft should be
well aware of this situation. Fu-
ture versions of Visual Basic
NET will most likely evolve to
provide this missing functional-
iy, to better serve its target audi-
ence. Expect to see advanced wiz-
ards, classes, and task-automation
tools. These will enhance produc-
tivity, allowing you to generate

Discuss thisopinioninthe Talk
to the Editors of Visual Studio
Magazine forum on our Web
site. Use this Locator+ code:
VS0309GO_D

The opinions expressed
in this editorial are those of
the author and not necessar-

A : ily the opinions of VSM.
applications as fast as possible. 7

On the other hand, the time
saved using a RAD tool is insignificant when amortized over five
or seven years of product lifecycle. In such cases, the real ques-
tion is the cost of long-term maintenance and extensibility. And
C# is Microsoft’s answer to that question.

Maintenance and extensibility have a lot to do with concepts
such as proper design, architecture, abstractions, and component
and interface factoring. Developers who wield these concepts
tend to spend the bulk of their time focusing on the code itself,
rather than on wizards and surrounding tools. C# presently ser-
vices such developers with a feature set that includes operator
overloading, fine-grained control over events and interface defi-
nition, built-in documentation, and in the future, generics,

iterators, and more.

For code-focused development, features such as edit-and-
continue and background compilation are almost irrelevant.
Conversely, task-oriented developers don’t require unsafe code,
generics, and the like. C# and VB.NET’s current versions already
reflect this divergence, which I expect to widen over time, as the
languages evolve to suit their target users more and more.

Task-oriented (RAD) developers should pick VB.NET mov-
ing forward, even if they’re coming from a C++/ MEC back-
ground. Developers who value ease of long-term maintenance

above all else should pick C#. vsm

Juval Léwy is a software architect and principal of IDesign, a consult-
ing and training company focused on .NET design and migration. He's
Microsoft's regional director for the Silicon Valley. His latest book is
Programming .NET Components (O'Reilly & Associates). Juval speaks
frequently at software-development conferences. Contact him at
www.idesign.net.

SEPTEMBER 2003 www.visualstudiomagazine.com



